首页> 外文OA文献 >Particle-in-cell simulations of laser-plasma interactions at solid densities and relativistic intensities: the role of atomic processes
【2h】

Particle-in-cell simulations of laser-plasma interactions at solid densities and relativistic intensities: the role of atomic processes

机译:固体中激光 - 等离子体相互作用的粒子模拟   密度和相对论强度:原子过程的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Direct studies of intense laser-solid interactions is still of greatchallenges, because of the many coupled physical mechanisms, such as directlaser heating, ionization dynamics, collision among charged particles, andelectrostatic or electromagnetic instabilities, to name just a few. Here, wepresent a full particle-in-cell simulation (PIC) framework, which enables us tocalculate laser-solid interactions in a "first principle" way, covering almost"all" the coupled physical mechanisms. Apart from the mechanisms above, thenumerical self-heating of PIC simulations, which usually appears insolid-density plasmas, is also well controlled by the proposed"layered-density" method. This method can be easily implemented into thestate-of-the-art PIC codes. Especially, the electron heating/acceleration atrelativistically intense laser-solid interactions in the presence of largescale pre-formed plasmas is re-investigated by this PIC code. Results indicatethat collisional damping (even though it is very week) can significantlyinfluence the electron heating/acceleration in front of the target. Furthermorethe Bremsstrahlung radiation will be enhanced by $2\sim3$ times when the solidis dramatically heated and ionized. For the considered case, where laser is ofintensity $10^{20}\ \text{W}/\text{cm}^2$ and pre-plasma in front of the solidtarget is of scale-length $10\ \mu\text{m}$, collision damping coupled withionization dynamics and Bremsstrahlung radiations is shown to lower the"cut-off" electron energy by $25\%$. In addition, the resistive electromagneticfields due to Ohmic-heating also play a non-ignorable role and must be includedin real laser-solid interactions.
机译:由于许多耦合的物理机制,例如直接激光加热,电离动力学,带电粒子之间的碰撞以及静电或电磁不稳定性,直接研究强激光-固体相互作用仍然是一个巨大的挑战。在这里,我们介绍了一个完整的单元中粒子模拟(PIC)框架,该框架使我们能够以“第一原理”的方式计算激光与固体之间的相互作用,几乎涵盖了所有“耦合”的物理机制。除上述机理外,PIC模拟的数值自热通常以固相密度等离子体出现,也可以通过提出的“层密度”方法很好地控制。这种方法可以很容易地实现到最新的PIC代码中。尤其是,通过此PIC代码重新研究了在存在大规模预形成等离子体的情况下相对论性强烈的激光-固体相互作用的电子加热/加速。结果表明,碰撞阻尼(即使是非常一周的时间)也可以显着影响目标前方的电子加热/加速。此外,当固体被剧烈加热和电离时,Bre致辐射将提高2到3倍。对于所考虑的情况,其中激光的强度为$ 10 ^ {20} \ \ text {W} / \ text {cm} ^ 2 $,而位于固体靶材前面的等离子的标尺长度为$ 10 \ \ mu \ text { m,$,碰撞阻尼与电离动力学和Bre致辐射一起显示,将“截止”电子能量降低了25%。另外,由欧姆加热引起的电阻电磁场也起着不可忽略的作用,必须包含在实际的激光-固体相互作用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号